ON THE SPECTRUM OF MAGNETIC FIELD AND SCALAR
IMPURITY FLUCTUATIONS IN ACOUSTIC TURBULENCE

S. I. Vainshtein

The fluctuations of a magnetic field in acoustic turbulence are examined. An equation is
derived for the spectral tensor of homogeneous magnetic field fluctuations. In a certain
limit case the spectrum of steady-state pulsations is obtained in the presence of an external
source. It is shown that three kinds of spectra exist in an inertial subdomain, each of which
corresponds to a definite domain in wave space. Analogous results have been obtained for
the fluctuations of a homogeneous scalar impurity.

Under certain conditions, weak magnetic field fluctuations will grow with time inthe presence of acous-
tic turbulence {1]. If

S = MR, >1

where M is the Mach number and Ry, the magnetic Reynolds number, then such an instability relative to the
magnetic field will actually occur. Magnetic field fluctuations will grow until the Lorentz force ceases to
influence the motion substantially, i.e., when the magnetic pressure is comparable to the plasma pressure.
For such a case it is difficult to obtaih the spectrum of steady-state fluctuations because there is no suit-
able small parameter here.

If S« 1, the fluctuations will damp out in the absence of external sources. The case is considered
herein when there is an external source.

This is apparently the single possibility of prolonged coexistence of a magnetic field and acoustic
turbulence since for S>> 1 turbulence ceases to be acoustic in the long run. The problem of the spectrum
of scalar impurity fluctuations in acoustic turbulence directly adjoins this problem because of the similarity
of the equations for the fluctuations in both problems. Hence, this question will also be examined below.

1. Spectrum of Magnetic Field Fluctuations

1. It is simplest to assign the source as follows: Let us assume thatthere is a homogeneous magnetic
field Hy, and the fluctuations are h « Hj.

There are two possibilities: Ry, <1, Ry >» 1. G. 8, Golitsyn [2] considered the case Ry, «<1. Let
Ry > 1. The equation for the magnetic field

%f} =rot [v, H] 4+ v,,AH (1.1)

can be simplified because of the smallness of the fluctuations

dh
5 = rot[v, Hy] +v,Ah (1.2)

or in a Fourier representation
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dh , k
LI [k [T ¢ (k), HOH — v k%h
Here vy, is the magnetic viscosity, and ¢ (k) /k is the Fourier transform of the hydrodynamic potential.

Let us express h(k, t) in terms of the initial field

t

h(k, £) = h(k, 0) ¢ *n™ 4 i\ om0 [ X o 1) 1, []at,
e ey .1 0
The time of variation of ¢ (k, t) is (ke)~1, where c is the speed of sound.

Furthermore, let us assume that the velocity and magnetic field fluctuations are homogeneous, and
moreover, the velocity fluctuations are isotropic:

@ O (K, £)) = 8 (k— K (R, | £ —¢')
<hi (k> t) h}'* (k’! t)> =0 (k - kl) Tij (k! Hov t) (1-4)

Let us multiply (1.3) by the complex conjugate and average the right and left sides by assuming that
h (k, 0} is statistically independent of p (k, t), whereupon we obtain

Ti;(k, Ho, t) = Ti5 (k, Hy, 0) & 'm™
kikj !
+ ("t (KH? + HyHoh? — (kHy) [H oy + Hoghil} (1.5)
[ .
x {(exp [ 2wt vk (8 + 1017 B, (6 — ) dtydty
00
To evaluate the integral in the right side of (1.5), let us perform still another Fourier transformation
of 7 (k, t) with respect to the time
+-00
f(k, t) = X ot (k, o) do (1.6)

—-—0

Furthermore

vm‘lkli + ©?

1 to et
(oxp [— 202 -+ v,k (£ + 1)1 £ (k. | 10 — ) dtydty= (4 4 &) § e do—2eme 20l do (LL7)
0 —_0

Se a3

2. Because the initial field is considered uncorrelated with the velocities, it is meaningful to examine
(1.5) for £ > 7, where 7 is the correlation time, i.e., the time duringwhich the system succeeds in "forgetting"
the initial conditions, Since Ry, > 1, the single parameter governing 7 will be the correlation time in k-
space, or the time of phonon interaction. Let us take this 7 from [3]
[
T=EWE (1.8)
E (k) = Av¥\-hk—h (A=1)

Here E(k) is the power spectrum of the acoustic oscillations, A is the external scale, v? is the mean
square amplitude; for k > 1/ the spectral domain corresponds fo the inertial. Precisely in this domain does
E(k) have the form (1.8), while for k< 1/A E(k) —~ 0.

Let us first examine (1.7) in that domain of wave. space where the relation

_1/’ .
T ‘%,k_z o ey, (1.9)

CVyy

is satisfied.
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On the other hand, let k >1/A (we will be interested in the inertial subdomain).

MR, 1

should be satisfied for the domain of interest 1/A <k « ky to exist.

Now, let us consider (1.7). Let us note that for t >

+o0 .
S J (k, o) ¢! do —> ZTE 0 e

Vit I @ Vil
—0

An equation for T;j can now be composed:

o0
6 | 2Ty = ks, (K, Hy) S ko) _ g,

Ve Ikt @®
—00

Jikej (KHL
oij = ”""‘,(;‘z‘L> + HoHok® — (kHo) [Hoiky + Hoikii]
For t—

=
(k, @
Tiy—sy § e do

-00

The inequality

To evaluate (1.12) approximately (the exact value of J(k, w) is unknown), let us note that

1
Vi 2kt - @2 =~ Vi k2

8(v)

Moreover, J(k, w) has a sharp maximum at w = = ck. Hence, we represent J(k, w) as follows:

T (b, ©) = J(k, 0)e(ck — o) e(ck + o) + Yof (k, 0)[8 (0 + ck) + 8 (@ — k)]

where e(x) is a unit step: e(x) =1 for x>0 and e(x) =0 for x= 0, Now (1.12) is evaluated as

}co
J (&, @) k,0) E(k
S de~ k + 1 (f (+0) = )

—00

where J(k, 0) has been obtained in [1]

J (k,0) = SP@W@
l/2

If E(k) has the form (1.8), then for k> 1/

J(k,0)= 3“ sx k‘5
Since

nJ (k, O k, 0
TR ) >]‘£2k2)

in the domain 1/ < k< kj, the stationary spectral tensor Tjj has the form

—1 - —34 —1 Ju—
Ty = 15019m ote 017

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)
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It is seen from (1.17) and (1.11) that the spectrum is essentially anisotropic. The trace of the tensor
is

o = Hok* — (Hk)*

Integrating Tij with respect to the solid angle and multiplying by k%, we obtain the power spectrum
of the magnetic pulsations

F (k) =81, A2H 2nv,, " ote 3) 13
( ) 9 0 m (1.18)

Hence, it is easy to evaluate the energy of the magnetic pulsations

=

2 1 b Ky
== \ FlOdk=Ho g
P

1

Since S «1, then h « Hj.
3. Now, let

T A Ve

i.e., k>k;, but k<oy m-1 . Inthis domain of the wave space the correlation between the magnetic field and

the velocity field is established in the time 7, = (vmkz)'1 so that it is necessary to examine (1.7) for t> 4.
Taking this circumstance into account, we obtain the stationary spectral tensor Tij and F(k)

Tym o | B0 dom gy LD (L.19)
F_:k) =2 gpt®
And, finally, for k>cyy, "t =k
Ty=aligd,  Foy=S B2 S (1.20)

This latter spectrum is the G. S. Golitsyn spectrum [2].
Therefore, in the case under consideration,when Ry, « M3, there are the following possibilities:
1) Ry, < M; then ky «1/A and for k >1/A the spectrum (1.20) is established;

2) M<Rpy < M™; then ky >>1/) but ky «1/A. Therefore, for 1/A <k < k, the function F(k) corresponds
to (1.19), while for k > k, the function F(k) corresponds to (1.20);

3) M7 « Ry, «M~3;then k, »k; »>1/A. Therefore, for 1/ < k < k the spectrum (1.18) is established,
for ky < k <k, the spectrum (1.19), and for k > k, the spectrum (1.20).

Let us turn attention to the following circumstance: The spectra (1.19) and (1.20) will exist even if
there is no interaction between the acoustic oscillations, if they are a set of random noises. Hence (1.19)
is due to the magnetic field ™racking" the oscillations, as actually occurs since the period of the oscilla-
tions in this spectral domain is considerably less than the time to damp of the field, and (1.20) represents
the fluctuations whose generation (due to the velocities) is canceled by the damping. Just the spectrum (1.18)
originates in the presence of interaction between the oscillations (i.e., turbulence, in substance) and the par-
ticles behind which the magnetic field "follows."

2., Spectrum of Scalar Impurity Fluctuations

In this problem let us start from the equation

a .
T?ft_ + div vf = pAf 2.1)

192



Here 7 is the density of the scalar impurity (temperature, say); p is the coefficient of molecular tem-
perature conduction (if it is temperature) or an analogous transport coefficient. The role of R, is played
by the Peclet number P in this theory. Let us assume that P> 1, but

S, = MP <1 2.2)

Condition (2.2) is necessary for the fluctuations to be small

f=fo+ 1, fo=const, i <Cfy

(r1 are the fluctuations)

The foundation of this assertion will be given below. Using the smallness of 7, let us simplify (2.1)

2} .
Ff}‘*’fodlvv:!*mfx 2-3)
or in the Fourier representation
OBD 1t (k, 1) = — ifokp (K, 0) 2.4)

o
(e, ) = £ (k, 0) et — gl {emvi 10 @ (k, 1) ity
; |

(2.5)
Furthermore, assuming
Falk, ) fy* (K, 8)) = 8(k —K) T (k, 1) (2.6)
we obtain an equation for T by using the same method as for the magnetic fields:
DT ED | uIRT (k, ) = 2kt T et do @
ot ) TPE e
As t— « the following stationary spectrum is built up:
+oo

T wet { 9a @.8)

—00

Upon compliance with the condition MP > 1, three sections of the spectrum are built up exactly as for
the magnetic fluctuations. The sole difference is that the spectral function T is independent of the angle in
this case. This is natural: There is no isolated direction in this problem., Here

s 7;2)“‘/ 2

By = PR k= cp'—l

For 1/A <k<ky the power spectrum H(k) is similar to (1.18), for k; <k <k, it is similar to (1.19) and
for k > k, to (1.20).

The root-mean-square value of the pulsations is
HD =Sy

Thus, the assertion presented above about the smallness of the pulsations upon compliance with (2.2)
is supported.

193



194

In conclusion, the author is grateful to R. Z. Sagdeev for discussing the results obtained at a seminar.
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